




Houses in a Row Rubric
The core elements of performance required by this task are:
• find a pattern in a sequence of diagrams
• use the pattern to make a prediction
Based on these, credit for specific aspects of performance should be assigned as follows

points
section
points

1.woranisesuoh4gniwohsmargaidtcerrocaswarD.1
1

2. Gives correct answer: 21 1
1

3. Gives correct answer: 31
Draws a correct diagram or gives a correct explanation such as:
The numbers go up by 5s, so I added 10 to 21.

1

1
2

4. Gives correct answer: 8
Gives a correct explanation such as:
Counts on from 6 houses need 31 toothpicks, 7 houses need 36 toothpicks, 8
houses need 41 toothpicks.
Draws a correct diagram or gives a correct explanation such as:
The first house needs 6 toothpicks. Each extra house needs 5 toothpicks.
41 – 6 = 35, 35 ÷ 5 = 7, 1 + 7 = 8

1

1

2

5. Gives a correct explanation such as:
The first house needs 6 toothpicks. Each extra house needs 5 toothpicks.
6 + 5 x 10 = 56
or
The number of toothpicks shows a repeating pattern of 1 and 6 on the
units digits.

Gives correct answer: 56

1

or

1

1 2
Total Points 8
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3rd Grade – Task 2: Houses in a Row
Work the task and examine the rubric.
What do you think are the key mathematics the task is trying to assess?
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________

Look at your student papers.
Did your students have trouble with the visual discrimination and seeing the attributes
of the houses?

Did they draw discrete houses?
Did they forget to include the vertical line separating the roof from the
house?
Did they add in extra details, like flowers or chimneys? What might these
students not understand about the purpose of the task, diagram, or the
mathematics? If you had time for an interview, what question would you
want to ask the student?

How many of your students thought the pattern increased by 6’s? What kinds of
questions might push them to see the overlap as houses become connected?

Look at work for part 3, how many of your students put:

31 21 32 or 33 36 Over 36 Other

Now think about the strategies used by students who were successful, did they:
Draw &
Count

Add 5’s Notice a pattern
1,6,1,6 . . .

Notice overlaps
+12- 2

Other

The thinking for extending the pattern in part 4 can become more difficult. If students
noticed that the pattern was going up by 5’s, did they understand the meaning of the
extra one? Do you think they could explain where the one came from by using the
diagram?
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Look at work for part 4. How many of your students put:
8 6 7 9 Other

What do you think they didn’t understand about the pattern that led to the three
common errors? What kinds of discussion could you facilitate with your students to get
them to confront their misconceptions?

Do you think your students could describe how the pattern grows in words? Give a rule
for finding the toothpicks for any number of houses? How might describing the pattern
growth help them to find a rule? How would different ways of seeing the pattern result
in different rules? Would all the rules give the same answer?

Understanding the Mathematics of Proportions and Functions with Constants
Consider the cost of buying t-shirts at Nancy’s, $6 each, or J-mart, $1 to enter the shirt
sale and $5 for each shirt.

Complete the tables.

Nancy’s
Number of shirts 1 2 3 4 5 6
Total cost 6 12

J-mart
Number of shirts 1 2 3 4 5 6
Total cost 6 11
Now use your tables to answer these questions.

Could you take the cost of 3 shirts and double it to find the cost of 6 shirts? Are
your answers the same as the values in your chart? Why or why not?
To find the cost of 15 shirts, could you take the cost of 6 shirts plus 6 shirts plus
three shirts? Why or why not?
To find the cost of 15 shirts, could you take the cost of 5 shirts and multiply by
3? Why or why not?

What is different about the two functions? Can you try to define why the addition and
multiplication work for one store but not the other?

How does this relate to the mathematics in Houses in a Row?
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Looking at student work on Houses in a Row:

A big piece of the mathematics of this task is seeing what happens when the houses connect, how
groups of houses are different from the same number of individual houses. Student A thinks about
each house having 6 toothpicks, but realizes that when the houses connect there are overlaps.
Toothpicks need to be subtracted for each overlap. With questioning the student could probably
explain that there are always one less overlaps than the number of houses. Algebraically, this pattern
could be expressed as
6x – (x - 1)= toothpicks.

Student A
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Another way of seeing the pattern is to think about the first house having six toothpicks and each
additional toothpick house contains only 5 toothpicks because the left side is already made by the
previous house. At a later grade level this might be expressed algebraically as toothpicks = 5(x-1) +6.
See the work of Student B.
Student B

As students move through the grades, they should start to think in groups or units other than ones.
Student C is able to think about the pattern growing by a unit of 5 and then reason about how many
“houses” or units are being added. This allows the student to move beyond the cumbersome strategies
of drawing and counting or doing multiple additions.



Grade Three – 2006 pg.
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation:

info@noycefdn.org.

25

Student C
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The big mathematical idea is understanding that this function has a constant of 1, every house has 5
toothpicks + there is an additional 1 toothpick needed only by the first house (or there is a growth rate
of 5 starting from 1 not zero). Student D understands this idea. Student E does not understand about
the initial first toothpick. The student treats the pattern as the proportion 5x. How would describing
the pattern or using colors to show the pattern help Student E see his mistake?
Student D
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Student E

If the table were a proportion (5x):

1 2 3 4 5 6

5 10 15 20 25 30

Then it would be quite valid mathematically to take the second term (10) and multiply it by 3 to get 30
for the 6h term or add the 4th term + the 4th term + 3rd term to equal the 11th term (20+20+15 = 55 or 5
(11)= 55). However, this reasoning is not valid for functions with a constant. If numbers from a table
with constants are added then the initial first toothpick is counted more than once. Students try to
make generalizations such as these about patterns from work with proportional situations and don’t
realize that the procedures will not work for all patterns. See the work of Student F and G.
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Student F

Student G



Grade Three – 2006 pg.
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation:

info@noycefdn.org.

29

Some students have difficulty thinking about the growth, what stays the same and what changes.
Student H sees that the first house has 6 toothpicks and incorrectly assumes that all the houses will
have 6 toothpicks. While in part 2 the student can fill out a table the student doesn’t connect the
growth in the table to the growth in the pattern.

Student H

We want all students to have access to the problem using a variety of strategies. The focus of third
grade number strand is to start seeing and thinking in groups, being able to see equal size groups as
representing a unit that can be used in multiplication. In algebraic thinking students should be able to
distinguish attributes of a geometric pattern and replicate the pattern. While many student need to
draw and count, students should start to transition into more efficient strategies, like adding on or
continuing a table. A few students will start to work towards generalization and finding and
describing rules using multiplication and constants.
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Third Grade

3rd Grade Task 2 Houses in a Row

Student Task Find a pattern in a sequence of diagrams. Use the pattern to make
prediction. Use inverse operations to solve a problem. Develop a
mathematical justification about why something is or isn’t true.

Core Idea 3
Patterns,
Functions,
and Algebra

Understand patterns and use mathematical models to represent and
to understand qualitative and quantitative relationships.

• Describe and extend geometric and numeric patterns.
• Model problem situations with objects and use representations

such as graphs and tables to draw conclusions.
• Describe quantitative change.
• Solve simple problems involving a functional relationship.

Mathematics in the Task:
Ability to see and extend an existing geometric pattern and visualize the attributes.
Ability to extend a table of numeric values based upon a specific geometric pattern.
Ability to explain and quantify the growth of a numeric pattern.
Ability to work backwards.
Ability to reason and give mathematical justification for why a given answer is incorrect
mathematically and then correct the error.

Based on teacher observation, this is what third graders knew and were able to do:
Extend the pattern in pictures
See the growth rate of 5
Extend the pattern numerically in a table

Areas of difficulty for third graders:
Understanding how the first term is different from the others
Reasoning about the remainder of 1 when they divided in part 4
Using drawing and counting or adding on accurately
Communicating their strategy, how they figured out their answer

Strategies used by successful students:
Drawing and counting
Adding 5’s or groups of 5
Continuing the table
Noticing that all odd houses end in 6, and all even houses end in 1 (while this was helpful in
solving this specific problem, it would be difficult to use with large numbers)
Multiplying by 6 and subtracting the overlaps
Seeing the pattern 6 +5 +5 +5 …..
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The maximum score available on this task is 8 points.
The minimum score for a level 3 response, meeting standards, is 5 points.

Most students, about 92%, could draw the fourth house. About 81% could also extend the values in
the table. Many students, 61%, could draw the house, extend the table, find the value for the 6th

house, and find the number of houses made with 41 toothpicks. More than half the students, 59%,
could also either explain how they found the 6th house or how they found the number of houses for 41
toothpicks. Almost 29% could meet all the demands of the task including extending the pattern to 11
houses, and explaining mathematically how they found all their answers. 7% of the students scored
no points on the task. All of the students in the sample with this score attempted the task.
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Houses in a Row
Points Understandings Misunderstandings

0 All the students in the sample with
this score attempted the task.

Students had difficulty with the
geometric pattern. They often drew
distinct, discrete houses rather than
houses that were connected or they left
out the toothpick separating the roof
from the house.

1 Students could draw 4 toothpick
houses.

Students had trouble thinking about
what happens when houses are
connected. They added by 6’s instead
of 5’s.

2 Students could draw the 4 houses
and find the total number of
toothpicks.

They had difficulty extending the
pattern to 6 houses. They may have
made counting or computational errors.
Many students could fill out the table
correctly, but when asked about 6
houses in a row put the answer for 4
houses instead (9%).

4 Students could draw 4 houses,
extend the pattern to 6 houses, and
find the number of houses that could
be made with 41 toothpicks.

Students had difficulty explaining how
they found their answers for 6 houses
or 41 toothpicks. In working
backwards, many students could not
explain where the remainder “one”
came from when they divided by 5 or
they got the correct answer by dividing
by 6 with computation errors.

5 Students could draw the houses,
extend the table, and then do one of
the other three parts of the task. The
split was pretty even between
missing part 3, 4 or 5.

Students had difficulty explaining their
thinking. They may have had trouble
working backwards or extending the
pattern to 11. Usually they tried to do
one of the parts using groups of 6 or
made mistakes in addition or
subtraction.

7 Students had difficulty with the
explanations in 3, 4, or 5.

8 Students could extend the pattern in
words, tables, and by house number.
Students could work backward from
a number of toothpicks to find the
number of houses. Students could
express their thinking in words,
calculations, or use pattern
recognition. They were also able to
make sense of the constant.
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Implications for Instruction
Students at this grade level need lots of activities to develop their visual discrimination. Activities
with sorting help them to focus on attributes of different shapes. Having students pick their own
categories for sorting adds the dimension of developing their own logic skills by forcing them to
identify the visual attributes they are seeing. Students need opportunities to draw their own shapes
and work with puzzles to develop a “feel” for how shapes are made and how angles fit together.
Working with extending geometric patterns, sharpens the number of details that they pay attention to.
Students should be asked to describe the pattern in words; telling what stays the same, what changes,
and how the pieces fit together. This not only helps them with the visual discrimination; but also gives
them important clues that leads to generalizations instead of recursive patterns.

In developing algebraic thinking in students of this age, teachers need to move students gradually
away from drawing and counting strategies, which are inefficient and cumbersome, to thinking about
growth rates and change. This process will lead students to developing adding on strategies or
continuing tables. As students develop an understanding of the meaning of multiplication, they will
hopefully start to think in groups (of five, in this case, but dependent on the specific problem).
Students should start to make the connection that if they are adding 4 more units to the pattern, then
they can multiply 4 times the growth rate and add that on.

While students at this grade level aren’t expected to have a full understanding of a constant, they
should notice where the pattern starts. “It is going up by 4’s starting at 3 or going up by 5’s starting at
6.” The geometric context should help students reason about why the first term is different.

Ideas for Action Research:
Creating an Investigative Classroom, Learning to share for sense-making-
After giving students an opportunity to work this task alone, then they should compare their ideas with
a group. Put up an example of a student dividing 41 by 6. Say you saw a student in another class
solving the task this way. In pairs have students try to figure out what the student is thinking about.
Then ask them if they think the student is right or wrong and why.
Now show them work like that of Student C, but take away the extra explanations. So for part 3: “I
did 5 x2=10, then 10+21=31.” For part 4, “I did 2 x 5 = 10, then 10 plus 31 = 41.” For part 5, “I did
41 + 15 = 56.” Ask them to figure out in their pairs what the student is doing. Why is the student
multiplying? How does the student know how many to multiply by? Where does the 2 come from?
Where does the 5 come from? What does the 15 mean?
Are there other examples that you think would be useful to put before students?
How does this process reengage students with the mathematics of the task? How does this promote
useful discourse in the classroom? Why did I suggest taking away the labels or extra explanation off
the work for student C? How does this push the thinking done by students?

Understanding Growth
A different approach to working the pattern problem would be to have students describe how the
pattern grows: what stays the same, what changes, what happens when two pieces are combined?
How is the first figure different than the next one that is added? If students can describe that the
pattern is going up by 5’s, see if they can outline the “5-ness” with a colored marker. See if students
can develop a verbal rule to find for any house number.



Grade Three – 2006 pg.
(c) Noyce Foundation 2006. To reproduce this document, permission must be granted by the Noyce Foundation:

info@noycefdn.org.

34

Some students will see the pattern as growing by 6 every time, but with overlaps. Ask them if there is
a way to predict the number of overlaps given any number of houses. Again, see if students can
develop a verbal rule to find the number of toothpicks needed for any house number.
While not all students are ready to make generalizations, these types of questions can develop their
logical reasoning skills so that at some future time they can move away from drawing and counting.
What other questions might help students think about the relationship between their number
calculations and the geometric pattern? Why is this important?

Both of these activities give students opportunities to talk meaningfully about mathematics and
practice using mathematical vocabulary. It also emphasizes that mathematics is not just about getting
an answer, but mathematics is also about sense-making and justification.
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Performance Assessment Task 

Houses in a Row 
Grade 3 

This task challenges a student to use knowledge geometric and numerical patterns to identify and 
continue a pattern.  A student must be able to use knowledge of patterns to evaluate and test a 
conjecture about how a pattern grows. A student must be able to model a problem situation with 
objects and use representations such as tables and number sentences to draw conclusions. A student 
must be able to explain and quantify the growth of a numerical pattern.

Common Core State Standards Math ‐ Content Standards 
Operations and Algebraic Thinking 
Solve problems involving the four operations, and identify and explain patterns in arithmetic. 
3.OA.8 Solve two‐step word problems using the four operations. Represent these problems using 
equations with a letter standing for the unknown quantity.  Assess the reasonableness of answers 
using mental computation and estimation strategies including rounding. 
 
3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), 
and explain them using properties of operations. For example, observe that 4 times a number is 
always even, and explain why 4 times a number can be decomposed into two equal parts. 
 

Common Core State Standards Math – Standards of Mathematical Practice 
MP.4 Model with mathematics. 
Mathematically proficient students can apply the mathematics they know to solve problems arising 
in everyday life, society, and the workplace. In early grades this might be as simple as writing an 
addition equation to describe a situation.  In middle grades, a student might apply proportional 
reasoning to plan a school event or analyze a problem in the community.  By high school, a student 
might use geometry to solve a design problem or use a function to describe how one quantity of 
interest depends on another.  Mathematically proficient students who can apply what they know are 
comfortable making assumptions and approximations to simplify a complicated situation, realizing 
that these may need revision later.  They are able to identify important quantities in a practical 
situation and map their relationships using such tools as diagrams, two‐way tables, graphs, 
flowcharts, and formulas.  They can analyze those relationships mathematically to draw conclusions.  
They routinely interpret their mathematical results in the context of the situation and reflect on 
whether the results make sense, possibly improving the model if it has not served its purpose. 
 
MP.8 Look for and express regularity in repeated reasoning. 
Mathematically proficient students notice if calculations are repeated, and look both for general 
methods and for shortcuts.  Upper elementary students might notice when dividing 25 by 11 that 
they are repeating the same calculations over and over again, and conclude they have a repeating 
decimal.  By paying attention to the calculation of slope as they repeatedly check whether points are 
on the line through (1,2) with slope 3, middle school students might abstract the equation (y ‐2)/(x‐
1) = 3. Noticing the regularity in the way terms cancel when expanding (x‐1)(x+1), (x‐1)(x2 + x + 1), 
and (x‐1)(x3 + x2 + x + 1) might lead them to the general formula for the sum of a geometric series.  As 
they work to solve a problem, mathematically proficient students maintain oversight of the process, 
while attending to the details.  They continually evaluate the reasonableness of their intermediate 
results. 
 

Assessment Results 
This task was developed by the Mathematics Assessment Resource Service and administered as part 
of a national, normed math assessment.  For comparison purposes, teachers may be interested in the 
results of the national assessment, including the total points possible for the task, the number of core 
points, and the percent of students that scored at standard on the task.  Related materials, including 
the scoring rubric, student work, and discussions of student understandings and misconceptions on 
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the task, are included in the task packet.
 
Grade Level  Year  Total Points  Core Points  % At Standard 

3  2006  8  5  60% 
 




