STUDENT: Times...
STUDENT: I think it's x times 3 minus 3 , so $\times 3$ minus 3 , yeah, because, because, then.
STUDENT: Yeah. It works! Yeah!
STUDENT: No, because
STUDENT: Times 3 minus 3 ..
STUDENT: minus 3 would be negative $3 \ldots$
STUDENT: Oh, yeah, so it is impossible!
STUDENT: Because, because, 0 times 3
STUDENT: Yeah, because anything times 0
STUDENT: and then minus 3, you're going negative, and we're only...
STUDENT: Yeah, yeah. I wonder why he said 0 ? He said that 0 could be a possibility.
STUDENT: I kind of understand where Griffin was coming from, though.
STUDENT: Yeah, like if he thought, that...
STUDENT: Yeah, it’s kind of fun.
OBSERVING TEACHER: Are you agreeing?
STUDENT: Then it's minus 3.
FRAN DICKINSON: So tell me. What were you hearing at your table? Kristin, what did you hear at your table?
STUDENT: Um, well, we thought that it could work, because your parameter was greater than or equal to 0
FRAN DICKINSON: All right. Christina, what did you hear at your table?
STUDENT: Well, we thought it wouldn't work, because, well, we think it would be negative 3 . Instead of 0 . Like, we didn't think that 0 would work.

FRAN DICKINSON: What would be negative 3? Can you be more specific?
STUDENT: The, the...
STUDENT: x !
STUDENT: y... the...
STUDENT: the x value...
STUDENT: it would be the y. The, um, output. Because, like, 0 wouldn't be positive.
FRAN DICKINSON: 0 , so, let me get some clarification now. So Griffin's guess was, his guess was a y value. He guessed 0 . So maybe I should write that on the board here. So. And my question to you was, is this possible? So I asked a very vague question there. What do you think, Robby?

STUDENT: It's kind of, because, I kind of noticed this, it's because the y, in every one, is bigger than the x, and your parameters say that x has to be greater than or equal to 0 , so if the x is smaller than the y , it can't be smaller than 0 , so it wouldn't work.

FRAN DICKINSON: Can someone put in different words what they hear Robby saying? Kylie.
STUDENT: Um, with all the numbers we've done so far, the y is bigger than x. so if the y is 0 , then x would have to be lower than 0 . But the parameters say that x has to be equal to or greater than 0 . So it wouldn't work.
FRAN DICKINSON: I see that I have some comments around the room. Eric, would you like to make a comment?
STUDENT: I think it works. I think, can I say what the x would be?
FRAN DICKINSON: Sure!
STUDENT: I think it would be 1 , because, um. The other ones work that x times 3 minus 3 , equals, $u m$, y ? and 1 , so 1 times 3 is equal to 3 , minus 3 is zero. So I thought it would work.
FRAN DICKINSON: I heard some "Ahhhhs." Did I hear that somewhere? I see some agreement around the room as well. Teo, what are you agreeing with?

STUDENT: I'm agreeing, because we talked about the same thing at our table.Because I was thinking negative at first but then I saw it as a y value, not the x value. So...
STUDENT: Oh!
STUDENT: And I thought, I don't know. And then Griffin told me what he was thinking. About what he said.
FRAN DICKINSON: Very good! Can I see agreement in the room? Or disagreement. This point here, is $1,0$.

